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Observing the Evolution of Neural Networks
Learning to Play the Game of Othello

Siang Y. Chong, Member, IEEE, Mei K. Tan, and Jonathon D. White

Abstract—A study was conducted to find out how game-playing
strategies for Othello (also known as reversi) can be learned
without expert knowledge. The approach used the coevolution
of a fixed-architecture neural-network-based evaluation function
combined with a standard minimax search algorithm. Compar-
isons between evolving neural networks and computer players
that used deterministic strategies allowed evolution to be observed
in real-time. Neural networks evolved to outperform the computer
players playing at higher ply-depths, despite being handicapped
by playing black and using minimax at ply-depth of two. In
addition, the playing ability of the population progressed from
novice, to intermediate, and then to master’s level. Individual
neural networks discovered various game-playing strategies,
starting with positional and later mobility. These results show that
neural networks can be evolved as evaluation functions, despite
the general difficulties associated with this approach. Success in
this case was due to a simple spatial preprocessing layer in the
neural network that captured spatial information, self-adaptation
of every weight and bias of the neural network, and a selection
method that allowed a diverse population of neural networks to be
carried forward from one generation to the next.

Index Terms—Artificial intelligence, coevolution, evolutionary
computation, neural networks, Othello.

1. INTRODUCTION

AMES HAVE always been an important domain for

studies into the behavior of artificial intelligence (AI)
systems. Board games like Othello, checkers, and chess,
provide a simple yet interesting testbed to study both the
decision-making and the learning aspects of Al systems.
First, these games have specific set of rules that constrain the
possible behaviors of the players (i.e., legal moves), thereby
simplifying the problem at hand. Second, these games have a
definite goal (e.g., to win the game) for the players to achieve.
Rewards are given to players that best exhibit certain behav-
iors (game-playing strategies) under the constraints of finite
resources (game pieces) that allow them to achieve the goal.
Third, these games have enough subtleties that allow a wide
range of complex behaviors represented by the diverse envi-
ronment of players.
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Many of the previous approaches to develop strong Al
systems to play these games focused on incorporating expert
knowledge, whether from domain experts, studies, or ex-
perimentations. Despite enjoying measured success, most of
them required substantial human knowledge that needed to be
preprogrammed into the system. Unlike most human players
that learned to play games from experiences, these Al systems
simply lacked the capability to learn to play the games on their
own.

However, some researchers have developed systems that can
learn to play games, using design cues from natural evolution
[1]-[6]. These evolutionary systems are a result of more wide-
spread research efforts on evolutionary computation [7]-[10],
as well as its application in neural networks’ training [11]-[15].
Evolutionary computation and neural networks have been used
either individually or as hybrids to solve many other interesting
real-world problems [16]-[18]. In particular for applications in
games, these evolutionary systems have shown great success.
In his recent book, “Blondie24: Playing at the Edge of Al [2],
Fogel showed that neural networks, trained using evolutionary
computation techniques, can be evolved to play checkers at a
high level without requiring any preprogrammed expert knowl-
edge. When pitted against human players on the Internet, the
best-evolved neural network obtained an expert ranking (rating
of 2045).

In this paper, we will focus on the game of Othello. Like
checkers, Othello is an interesting board game for studies.
Othello is a deterministic, perfect information, zero-sum game
of two players. It has a simple set of rules, an average of 60
moves to complete, and a small average branching factor of
seven [19]. However, despite its simplicity for players to learn,
it is a challenging game to master. One reason is that unlike
games like chess, every legal move in Othello adds an extra
piece to the board that cannot be removed (only flipped to
another color). As the game progresses, possible moves are
gradually limited. Another reason is that every legal move
involves flipping pieces to another color. This makes it difficult
to keep track of the piece topology because it can change
drastically from one move to another.

As for games in general, most programs developed for strong
Othello play depend on expert-knowledge-based evaluation
functions and advanced search algorithms that can search to
deep plies in a relatively short time. A typical example is
Rosenbloom’s Tago, the first master-level program [20]. No
learning mechanism was incorporated. Later, Lee and Mahajan
introduced Bayesian learning (by combining features in the
evaluation function) into Bill, although advanced searching
and timing techniques were still required [21]. Finally, Buro
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continued with the development of a stronger program by
improving on and using more sophisticated machine learning
techniques [22]. The resulting program called Logistello
became the first Othello program to defeat a human world
champion [23], [24].

An interesting alternative is to employ a hybrid system of
evolutionary computation and neural networks to enable the
system to learn to play Othello without expert knowledge.
Within this general framework, three different approaches are
possible: 1) apply evolutionary algorithms (EAs) to the search
algorithm to allow for more effective pruning, while keeping
the evaluation function fixed; 2) apply EAs to the evaluation
function, while keeping the search algorithm fixed; or 3) apply
EAs to both the search algorithm and the evaluation function.

Moriarty and Miikkulainen chose the first approach, em-
ploying simple genetic algorithms (GAs) to evolve focus
networks for more effective pruning and searching through
the game tree by directing minimax searches away from poor
information [5]. In comparison to a full-width, fixed-depth
alpha-beta, the selective search by this focus network resulted
in better play at reduced search times. Its success was due to
the ability of evolved focus networks to produce a ranking
for the moves. Moriarty and Miikkulainen also evolved neural
networks (at the level of architecture and connectivity) that
could make moves directly and that exhibited strong Othello
game-play [6].

In this paper, we take the second approach—keeping the
search algorithm fixed and evolving the evaluation function.
We show that through coevolution, neural networks can be
evolved to learn to play Othello. In Section II, we describe the
model and the implementation of the simulation. In Section III,
computer players implementing deterministic strategies were
used as external monitors of the evolutionary process. We show
that the population of neural networks coevolved in level of
play from novice, to intermediate, and finally, to master level.
In Section IV, individual games were analyzed. Such analysis
shows that the evolved neural networks (ENNs) discovered in-
teresting strategies, starting with positional strategy and, in the
later generations, the more sophisticated mobility strategy. In
addition, since the approach used here is considered generally
to be difficult as it requires comparisons of absolute values
produced from different neural networks, as well as activations
from the same neural network (we note previous attempts in
Othello were not encouraging [5]), we introduce three impor-
tant design criteria that led to success in this case. Finally,
Section V concludes this paper with some recommendations
for future work.

II. GAME IMPLEMENTATION

Othello is a popular zero-sum game in which two players,
designated black and white, alternatively place their pieces on
an eight-by-eight board. Starting from the initial board posi-
tion [Fig. 1 (top-left)], the black player makes the first move.
A legal move is one in which the new piece is placed adja-
cent (horizontally, vertically, or diagonally) to an opponent’s
existing piece [Fig. 1 (top-right)] in such a way that at least one
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Fig. 1. Tllustration of basic allowed Othello moves. Players alternatively
place black and white pieces on the board. (Top-left) The initial board position.
(Top-right) Legal black moves at a point later in the game are shown with
crossed circles. Once the player (black) has selected a valid move (bottom-left),
the surrounded enemy (white) pieces are replaced with the player’s own pieces
(bottom-right).

of the opponent’s pieces lies between one of the player’s ex-
isting pieces and the new piece [Fig. 1 (bottom-left)]. The move
is completed when the surrounded pieces are removed and re-
placed with pieces of the player’s own color [Fig. 1 (bottom-
right)]. The game is completed when neither player can make a
legal move, which, in general, occurs when there are no empty
squares remaining on the board. The winner is the player with
the most pieces on the board at the end of the game. In the event
that both players possess an equal number of pieces, each player
is awarded a draw.

With respect to the implementation of the simulation, four
modules [1) search algorithm; 2) neural-network-based evalua-
tion function; 3) mutation module that is applied to the neural
networks; and 4) tournament-based selection for the next gener-
ation] are interfaced together to simulate evolution of a popula-
tion of neural networks (game-playing strategies). In addition,
a fifth module is used to monitor the evolution process without
participating. The simulation itself was written in ANSI-C and
compiled and run on a 1 GHz Intel processor-based PC. Each
module is discussed below.

A. Search Algorithm

As the emphasis of this study is not on optimizing the
search algorithm, this module employs the minimax algorithm
described in [25]. The basic principle of the algorithm is that
the best possible move for every turn is the one that minimizes
the maximum damage the opponent can inflict. It assumes
that the heuristics used to determine the value of the moves
when searching through the game tree are accurate. Here, this
well-known approach to solving zero-sum games (i.e., chess,
checkers, and Othello) is used to search for the best possible
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Fig. 2. Model of the neural-network-based evaluation function. The model is
based on a feed-forward MLP used in [1]. Given any board pattern as a vector
of 64 inputs, the first hidden layer (spatial preprocessing layer) assigned a node
to every possible square subset of the board. The outputs of these nodes were
then passed to two additional hidden layers, consisting of 40 and 10 nodes,
respectively. The final output node, which included the piece differential as
an additional input, was scaled between [—1, 1]. This output represents the
evaluation of the board position by the neural network.

move based on game heuristics (evaluations) provided by the
neural networks. Thus, the overall strength of play of the neural
networks will be based largely on the reliability of game heuris-
tics provided by the neural networks (input—output response)
when searching through the tree. During game simulation, the
ply-depth used for searching was restricted to two for the neural
networks. A variable ply-depth mechanism is not implemented
as the focus of this study is on evolving the evaluation function
and not making improvements to the basic minimax algorithm.

B. Neural-Network-Based Evaluation Function

The neural network provides strategies required to play Oth-
ello effectively through its evaluation of the board positions pre-
sented to it during minimax search. It depends on both piece dif-
ferential information and the use of spatial information gained
through pattern recognition for decision-making, as well as the
ability to generalize input—output mappings to effective Othello
strategies. It should be noted that unlike other approaches, no
Othello expert knowledge such as lookup tables for opening,
middle and end sequences, or expert heuristics of board posi-
tion values are used in the simulation. Neural networks are ini-
tialized randomly and have to learn to evaluate board positions
through coevolution following the methods of [1] and [4].

Fig. 2 illustrates the neural network model that is used for
the evaluation function. It is based on the multilayer perceptron
(MLP) model implemented in Chellapilla and Fogel’s exper-
iments on evolving neural networks to learn to play checkers
[1]. The neural network consists of an input layer, three hidden
layers, and an output layer.

The input layer is designed to represent the Othello board. It is
a 64 x 1 vector (array) consisting of 64 components to represent
the 64 Othello board positions. The components can take black
pieces, white pieces, or empty squares that are represented in a

computable manner {—1,0, 41}, where O represents an empty
square, while +1 and —1 represents a black piece and white
piece, respectively.

The first hidden layer acts as a spatial preprocessing layer to
allow the neural network to process, analyze and most important
of all, to generate features of the possible spatial information
contained in the Othello board. As shown in Fig. 2, this layer
consists of a total of 91 nodes of seven different types—each
responsible for sampling a different board subsection. For ex-
ample, 36 nodes sample all possible 3 x 3 board subsections,
while another 25 nodes sample all possible 4 x 4 subsections of
the 8 x 8 board. While other methods which take into account
the symmetry of the board are possible [19], this method en-
sures that no spatial features characteristic of the Othello board
are input a priori, while still allowing the neural network to cap-
ture spatial information.

The second and third layers consist of 40 and 10 nodes, re-
spectively. Each second layer node is connected to the output of
every first layer node, while each third layer node is connected
to the output of every second layer node. A single output node,
in addition to being connected to the output of every third layer
node, also receives piece differential information. The output
of this node (a real number between —1 and +1) is the eval-
uation of the current board position. This output is returned to
the search algorithm module. A positive value indicates a board
position that the neural network considers to be favorable to it,
while a negative value indicates a board position adverse to the
neural network. As for the design of the nodes, at each node a
hyperbolic tangent (bounded by +1) function is applied to the
sum of the weighted inputs and a bias to provide nonlinearity.

Three hidden layers were chosen as a similar architecture was
successfully applied by Chellapilla and Fogel to the problem of
learning to play checkers [1]. For Othello, a game of moderate
complexity (harder than checkers [19], yet simpler than chess),
it is likely that the number of hidden layers are more than that
required by the problem. However, any hand optimization to
the number of hidden layers and nodes of the fixed-architec-
ture neural networks would represent a defacto use of a priori
knowledge, and as such would defeat the purpose of this sim-
ulation—the avoidance of using a priori knowledge. In addi-
tion, such an optimization would offer no significant advantage
since the main cost in computing time is the minimax algorithm,
not the neural-network-based evaluation function. We note that
while there are other sophisticated approaches that can evolve
both neural network weights and structure at the same time [6],
[14], [15], the advantage of the approach used here in evolving
the weights of a fixed-architecture neural network is its concep-
tual and implementation simplicity.

C. Mutation

Coevolution is used to evolve the neural networks. The ad-
vantage of this approach is that it precludes the need to design
a strong computer player to act as opponent and fitness evalu-
ator for the neural networks. Designing such an opponent still
requires expert knowledge of the game. In coevolution, neural
networks compete with their peers (other neural networks of the
same generation) for survival. The aim is that by having neural
networks compete with their peers that are evolving at the same
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time and hopefully improving, an escalating arms race will re-
sult and neural networks will discover Othello game-playing
strategies. A beneficial effect of a careful use of coevolution is
that it can produce more general game-playing strategies com-
pared to traditional evolutionary approach that uses determin-
istic opponents. Coevolution had been used in many game-re-
lated problems such as checkers [1], Backgammon [26], and
Iterated Prisoner’s Dilemma [27], [28].

As in other real-valued parameters optimization problems,
the coevolutionary approach used requires an efficient muta-
tion scheme that generates appropriate changes to move ob-
ject vectors (in this case, the neural networks) to optimal re-
gions by a right amount and at the right time [29]. For example,
Ankit and Fogel [30] showed that when Gaussian mutation was
used to optimize a simple neural network to solve the XOR
problem, the optimal mutation step size is different at different
time (generation) during the evolutionary process. Here, instead
of experimenting with heuristic schedules to vary mutation step
sizes throughout the evolutionary process (which can be diffi-
cult), self-adaptation is used to allow the evolutionary process
itself to search and vary the step sizes accordingly [7], [10],
[31]. Self-adaptation has been used in most EAs for optimizing
real-valued representations such as in evolution strategies (ES)
and evolutionary programming (EP) [8], [9], [32]. Self-adaptive
mutation operators have been investigated in a number of bench-
mark problems [33]-[35]. Furthermore, a self-adaptive muta-
tion operator has been successfully used to evolve neural net-
works to solve real-world problems such as in breast cancer
detection [18].

In this paper, the primary variation operator used is a self-
adaptive Gaussian mutation, extended to include individual con-
trol of mutation step size for each weight or bias of the neural
network [1]. This increase in the degree of freedom in mutating
the neural networks is important, given the complexity of the
problem and the architecture of neural network being used. The
procedure for generating offspring is described as follows. The
population at every generation consists of 20 neural networks
(strategies): ten parents and ten offspring. Each neural network
has its own weights and biases (denoted [w;(7)]), as well as a
self-adaptive parameter vector (denoted [o;(j)]) that controls
the step size of the mutation of the weights and biases when
offspring are generated. In each generation, the self-adaptive
Gaussian mutation is used to generate offspring.

The initial population was created by randomly generating
(by sampling from a uniform distribution over [—0.2,0.2])
the weights and biases [w;(j)] of ten parent neural networks
(PNNs). Each component of the self-adaptive parameter vector
[0:(4)] of the PNNs was set to 0.05 for consistency with the
range of initial weights and biases.

Ten offspring (consisting of weights and bias terms [w/(5)], as
well as self-adaptive parameter vector [o}(7)]) were generated
through self-adaptive Gaussian mutation from each of the ten
parents, respectively, according to the following equations:

(4)

o; 0i(j) * exp(T * N;(0,1))
wi(j) = wi

wi(§) + oi(4) * N;(0,1)

where ¢ = 1,..., 10 denotes the neural network being evolved,
j =1...N, where N, is the total number of weights and bi-
ases needed for each neural network, 7 = (2(N,,)?%)7 %5 =
0.08068 and N;(0,1) is a standard Gaussian random variable
resampled for every j. In the above architecture: N,, = (total
number of nodes and biases in layer 1)4-(40 nodes in layer
2)x (91 inputs+1 bias)+(10 nodes in layer 3)x (40 inputs+1
bias)+(1 output node) x (10 inputs+1 bias)= 5900.

D. Tournament Selection

For each generation, a selection mechanism is employed to
determine a neural network’s overall fitness relative to the whole
population in order to select the parents for the next genera-
tion. While it is possible to use a fitness function, such an ap-
proach would change the simulation into a strictly traditional
optimization exercise where knowledge is important. In this ex-
periment, tournament selection (EP selection mechanism [36])
is used in the coevolutionary setting. Tournament selection has
been used successfully in a number of experiments that involve
coevolving neural networks to play games [1]-[4]. In the present
work, each neural network competes (as black) against five ran-
domly chosen peers. For each game, the winning and losing
neural networks received five and zero points, respectively. In
the case of a draw, both neural networks received one point.
This point setting was chosen to encourage neural networks to
play for wins rather than draws. Two neural networks were not
prohibited from competing twice with each other if each game
was played as a different color. Games were ended when ten
move skips occurred (i.e., generally when neither player is able
to move). A key feature of the tournament selection used here
is that the number of times a neural network was selected to
play white were not fixed. This design adds further to the non-
deterministic nature of the selection method in order to further
increase population diversity in the next generation by occasion-
ally allowing weaker neural networks to survive.

At the end of the tournament, the ten neural networks with
the most points were selected as the parents of the following
generation. Control was then passed to the mutation module.
Together, iterating the process of modules 3 (mutation) and 4
(tournament selection) allows for coevolution of the neural-net-
work-based evaluation functions.

E. External Observer

During simulation, the parents for the next generation (after
selection) were compared with computer players (external ob-
servers) through Othello game competitions to provide an in-
dependent monitor of the “fitness” of the population as evolu-
tion progressed. The computer player employed the same search
algorithm but rather than using a neural network to provide
the board evaluation, a deterministic evaluation function (such
as one based on piece differentials or positional information)
was employed. Comparison started with each PNN competing
with the computer player playing at ply-depth of two (the same
ply-depth used by neural network). For every PNN win, the rela-
tive level of play of the computer player was raised by increasing
its ply-depth by two. The PNN competed always as black. It
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Fig. 3. Number and percent of PNNs playing at ply-depth of two capable

of defeating computer players using fixed evaluation function and playing at
ply-depths greater than the PNNs as a function of generation. The raw data is
indicated by gray lines. The black line is the result of adjacent averaging over
100 generations and shows improvement as evolution continues although there
are setbacks. In (a), the opponent is using a piece-differential-based evaluation
function, while in (b), the opponent is a positional player (evaluation function
is based on the positional strategy of Iago [20]).
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Fig. 4. Comparison between the top-ranked PNN of each generation with
the piece differential player playing at ply-depth of six. Vertical gray lines
indicate wins. The black lines represent the win/loss ratio of the top-seated
PNN averaged over 20 (thin line) and 50 (thick line) generations. The inset
illustrates the average tournament points received by the population of PNNs.

should be emphasized that the results of this competition are
not available to the neural networks themselves.

III. RESULTS

The simulation was run for 1000 generations and the results
were summarized in Figs. 3-5. Fig. 3 shows the number of
PNNs that outperformed computer players using fixed evalu-
ation functions as a function of generation. The PNN played
black and used a ply-depth of two, while the computer players
were allowed to play at ply-depth of four. In Fig. 3(a), the
computer player used a piece-differential-based evaluation
function. The raw data (gray lines) indicates that even in
early generations, there were PNNs that defeated the piece
differential player. Looking at the entire evolutionary process,
improvements were noted across 1000 generations although
substantial fluctuations could be seen. In later generations,
a consistently greater percentage of PNNs outperformed the
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Fig.5. Evolution in playing ability of the PNNs with generation. The PNNs at
each generation were evaluated by playing against the piece differential player,
with the ply-depth being increased in steps of two until the PNN lost. (a) Number
of PNNs that can defeat the piece differential player playing at ply-depth of
two but lost when it is playing at ply-depth of four. (b) Number of PNNs that
can defeat the piece differential player playing at ply-depth of two and four
but lost when it is playing at ply-depth of six. (c) Number of PNNs that can
defeat the piece differential player playing at ply-depth of two, four, and six.
The comparison stops at a ply-depth of six because at ply-depth of eight, the
minimax algorithm was unable to run in a reasonable time.

piece differential player. At the end of the simulation, about
nine out of ten PNNs achieved this particular level of play.
This evolution can be seen more clearly by adjacent averaging
the numbers over 100 generations (black lines), which indi-
cates, despite fluctuations, gradual improvements in the PNNs’
performance, starting from approximately 20% win-rate to a
70% win-rate over the generations. A least-squares fit of a
second-order polynomial (third-, and fourth-order coefficients
are essentially zero) indicates that the rate of improvement of
the play of the PNNs increased as evolution progressed.

Fig. 3(b) provides a similar comparison between PNNs and a
computer player that used a position-based evaluation function
(positional strategy of Iago [20]). Looking at the evolutionary
process as a whole, the results in Fig. 3(b) are somewhat sim-
ilar to Fig. 3(a), with improvements of the PNNs’ competitive-
ness against the positional player as evolution continued. As in
Fig. 3(a), fluctuations from generation to generation, and “per-
formance dips” can be observed. However, the exact locations
of the dips differ [compare the black lines in Fig. 3(a) and (b)].
For example, around the 600th generation, very few PNNs em-
ployed strategies that can defeat the piece differential player but
the majority of PNNs defeated the positional player, indicating
that performance dips are not the result of a complete loss of
playability among the PNNs. The significance of these dips will
be discussed later in the text.

Fig. 4 (inset) shows the change in the average tournament
points of PNNs over the generations (maximum point is 50).
While slight fluctuations exist between generations, there is
little increase in the average point of the ensemble of PNNs over
time. The average remains at seven wins with very few draws.
Individually, each PNN also achieved between six to eight
wins, indicating that neural networks are coevolving without
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any “superstars” appearing. The vertical lines (gray) in Fig. 4
(main) are the results of comparisons between the PNN ranked
first based on the tournament selection in each generation with
the piece differential player playing at ply-depth of six. Ver-
tical lines occurred whenever the top PNN defeated the piece
differential player. For a given generation, the win/loss ratio
was either one (win) or zero (loss). While isolated victories
occurred earlier in the young population, it was only in the
later generations that top PNNs could defeat consistently the
piece differential player. This can be seen more clearly with
adjacent averaging of top PNN’s performance over 20 (thin
black line) and 50 generations (heavy black line). For the young
population, the win/loss ratio remained below 0.2 dropping to
0.0 at about the 600th generation. However, from the 600th
generation onwards, particularly from the 800th to 1000th gen-
erations, most of the top PNN during this period outperformed
the piece differential player playing at a ply-depth of six. This
indicates that coevolution had found higher level of play, with
top PNNs not only outperforming the piece differential player,
but also their peers in their respective generation that were
similarly competitive with the same piece differential player.

Fig. 5 illustrates the evolution of the neural network popula-
tion in relation to the level of play expected by a human player.
Fig. 5(a) plots the number of PNNs playing at novice level
(able to defeat the piece differential player when it is playing
at ply-depth of two but lost when it is playing at ply-depth of
four). Fig. 5(b) plots the number of PNNs that are playing at
an intermediate level (able to defeat the piece differential player
when it is playing at ply-depth of four but lost when it is playing
at ply-depth of six). Fig. 5(c) plots the number of PNNs that
are playing at a master level (able to defeat the piece differen-
tial player when it is playing at ply-depth of six). The majority
of the PNNs that were playing at the novice level occurred in
the earlier generations of the evolution [Fig. 5(a)]. The number
of PNNs playing at the novice level decreased sharply around
the 400th generation as most of the PNNs improved their level
of play. From the 400th generation to 800th generation, the
majority of the PNNs played at intermediate level [Fig. 5(b)].
However, the shift from novice to intermediate level was not par-
ticularly specific, with indications of intermediate level of play
surfacing as early as the 250th generation for a short period. Sus-
tained intermediate level of play among the PNNs started around
the 425th generation, with occasional dips at intervals between
the 600th and 625th, as well as at the 800th to 820th gener-
ations. The number of PNNs playing at an intermediate level
slowly diminished from the 800th generation onwards being re-
placed with PNNs playing at master level of play. PNNs started
to play at a master level around 700th generation [Fig. 5(c)]
with the shift from intermediate to master level of play occur-
ring around the 800th generation. (We were unable to run the
computer player at ply-depths higher than six, as the computa-
tion time taken by the computer player was prohibitive on the
available personal computers).

IV. DISCUSSION
A. Evolution of the Neural Networks

As mentioned earlier, the overall fitness of the population
of neural networks was monitored with the help of an external

computer player through game competitions. For effective mon-
itoring, it is important that the computer player’s level of play is
neither substantially stronger nor substantially weaker than the
evolving neural networks. A computer player that either defeats
all or loses to all the neural networks is not a good monitor. Fur-
thermore, the computer player’s level of play should be adapt-
able in a controlled manner. This was accomplished by allowing
the computer player to use the same minimax search algorithm
and to vary the ply-depth. Given the advantage that the neural
networks had from their added computational power, the neural
networks were handicapped. First, neural networks were lim-
ited to using a ply-depth of two. Second, the neural networks
played black as the computer players are better playing white
(when two computer players using the same evaluation func-
tions competed with each other, the black player needed to play
at ply-depth of six to defeat the white player playing at ply-depth
of two). Such an appropriate choice of the computer player al-
lowed us to observe the changing level of play of the population
of neural networks.

Consider first the performance of the neural networks in terms
of overcoming the handicap of playing black and using a ply-
depth of two for the minimax. Results in Fig. 3(a) show in-
creasing numbers of the PNNs outperformed the piece differen-
tial player playing at ply-depth of four as evolution continued.
At the end of the evolution, the majority of the PNNs outper-
formed the computer player. From these two observations, there
is a strong indication that the neural networks had evolved to
overcome the handicap of playing black and using a shallow
minimax search depth of two. This is an interesting result, con-
sidering that no information that could help distinguish the per-
formance among the strategies (represented by neural networks)
were fed back to the evolutionary system. The only informa-
tion available was the points obtained from the neural network’s
competitions, and this information did not indicate the specific
games that the neural network won, lost, or drew.

Fig. 5 shows that the level of play of the ensemble of PNNs
improved gradually as evolution continued. Before the 400th
generation, the majority of PNNs played at novice level. As evo-
lution continued, the majority of PNNs improved in their level of
play to intermediate, and finally to master level. From about the
800th generation onwards, the majority of the PNNs achieved
master level. Fig. 6 shows that these same PNNs evolved at the
end to outperform the positional player as well. In addition, the
top PNNs at each respective generation also achieved a similar
level of play (Fig. 4). This observation indicates that the top per-
forming neural networks had evolved to a high level of play,
given that they can defeat both piece differential and positional
players playing at ply-depth of six, as well as most of their peers
that were similarly competitive with the computer players.

Having observed from the game statistics the gradual evo-
lution of the neural networks to a high level of play, we now
turn to the analysis of individual games between the neural net-
works and the computer player to look for changes in the strate-
gies employed by the networks. Starting early on around 250th
generations, analysis of individual games showed that the PNNs
had ascertained the importance of the corner points. Although
individual PNNs started the game differently and appeared to
be playing different strategies, during the middle game, most
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Fig. 6. Evolution in playing ability of the PNNs with generation. In this figure,
the external observer is a positional player. (a) Number of PNNs that can defeat
the positional player playing at ply-depth of two but lost when it is playing at
ply-depth of four. (b) Number of PNNs that can defeat the positional player
playing at ply-depth of two and four but lost when it is playing at ply-depth
of six. (¢) Number of PNNs that can defeat the positional player playing at
ply-depth of two, four, and six.
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Fig.7. (Top) Total number of pieces on the board and (bottom) total number of
possible moves for an PNN (generation 643) playing against a positional player
as an Othello game progresses. The PNN is playing at a ply-depth of two and
the positional player is playing at a ply-depth of four.

PNNs captured more corner points than the computer player.
After that, PNNs took advantage of the corner points to win
the game. It appears that neural networks, through the use of
the spatial preprocessing layer, had discovered and incorporated
interesting positional strategies that placed importance to, and
then captured the strategic corner points.

As the neural networks continued to evolve, their style of play
shifted from positional and started to show hints of employing
mobility strategy [37]. Fig. 7 shows the example of one game
between a PNN at generation 643 that used a mobility strategy
against the positional player playing at ply-depth of four. From
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Fig. 8. (Top) Total number of pieces on the board and (bottom) total number of
possible moves for an PNN (generation 892) playing against a computer player
as an Othello game progresses. The computer player is playing at a ply-depth
of two and employing both the positional and mobility strategies of Iago. The
PNN is playing at a ply-depth of four.

the start to the middle of the game, the neural network main-
tained a low piece count allowing the positional player to ac-
crue more pieces. However, as the game progressed from the
middle to the end, the neural network maintained much greater
mobility (i.e., at move 50, the neural network had 12 possible
choices, while the positional player had only two). Starting from
move 50, the better mobility of the PNN (the positional player
only had around one to two choices from this point onwards)
allowed it to move-by-move reduce the piece differential and fi-
nally win by a comfortable margin of 44:20.

Toward the end of the evolution, the majority of the PNNs
did well against both positional and piece differential players,
indicating more feasible and general use of strategies that in-
cluded mobility play. As a further comparison, PNNs in the later
generations were pitted against a player incorporating both the
positional strategy and mobility strategy of Iago. PNNs playing
at ply-depth of two were competitive with the lago-like player,
slightly losing out at around four pieces. However, when PNNs’
ply-depth was increased to four, they outperformed the lago-like
player. For example, in one game, the PNN exhibited a feasible
mobility strategy against the Iago-like player (Fig. 8). How-
ever, as reported in [6], it will be difficult for PNNs to com-
pete against players with strong positional and mobility strate-
gies such as Bill [21] or Logistello [22] even while playing at
higher ply-depths.

B. Noise in, and Reliability of, the Evolutionary Process

As seen in Fig. 3 (data), there are strong fluctuations in the
performance of the PNNs between generations, as well as some
longer performance dips at the 400th, 600th, and 800th gener-
ations when comparisons were made with the piece differential
player. This strong noise is due mainly to using a small pop-
ulation (20 neural networks) and was confirmed by increasing
the population size by 50% and rerunning the simulation. Fig. 9
illustrates the result, showing a smoother evolutionary process
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Fig. 9. Number and percent of PNNs playing at ply-depth of two capable of
defeating piece differential player playing at ply-depths greater than the PNNs
as a function of generation for a population size of 30. The black line is the result
of adjacent averaging over 100 generations.

with less pronounced fluctuations. Performance dips, while still
present, do not occur for substantial periods of time (genera-
tion). This effect of population size on noise can be understood
by noting that each neural network represents a search point in
the Othello strategy search space. A small population has a ten-
dency to become homogeneous because it lacks the informa-
tion capacity to accurately sample the search space [38]. Indeed,
the original experiment (Fig. 3) showed that it was difficult to
evolve neural networks to be effective against both piece dif-
ferential and positional players at the same rate. As seen in the
400th, 600th, and 800th generations, the majority of the neural
networks were only effective against a particular deterministic
strategy. Although the evolution of neural networks against both
players showed an increasing trend in the long run, it was only
toward the end that the neural networks evolved to be simulta-
neously competitive against both players. Increasing the popu-
lation size can help reduce the noise and subsequently increase
the reliability of the evolutionary process, since increasing the
population size (i.e., search points) makes it easier for the evolu-
tionary process to balance exploring other regions for potential
strategies and maintaining current feasible strategies. However,
consideration also needs to be given to the additional computa-
tion time per generation incurred from using a larger population
size. In this work, we have shown that, despite using a small
population size, good performance could still be achieved with
very low computation costs.

C. On A Priori Knowledge

In this paper, we have argued that no use has been made of
any preprogrammed expert knowledge. In response to the argu-
ment that the knowledge of the piece differential provided to the
neural network is a form of expert knowledge, it should be noted
that any beginner knows that the player with the most pieces at
the end of the game, wins. Furthermore, piece difference is an
obvious and important factor for consideration at every move
that can be computed easily by even novice human players. In
response to the argument that the inclusion of the spatial prepro-
cessing layer in the neural network is a form of expert knowl-
edge, it should be noted that any human player could see and
discern, with ease, the spatial arrangement of pieces on the Oth-
ello board. The spatial preprocessing layer should not be consid-
ered as a preprogrammed mechanism to give the neural network
advantage as it has only provided a basic ability for the neural
network to sample the Othello board for spatial information. It

is the spatial feature extraction and the corresponding informa-
tion processing that should be considered as a priori knowledge,
and in this experiment, this knowledge was evolved, not prepro-
grammed. Finally, in response to the argument that the use of
a minimax search algorithm is a form of expert knowledge, it
may be legitimate if a deep search is used. In the current work,
however, the neural network is limited to using only a ply-depth
of two. In this case, the use of minimax offers no big advan-
tage to the neural network’s performance. It only provides the
neural network with a mechanism to compare board situations
from certain move choices. The move selected as a result of the
minimax depends on the accuracy of the neural network in eval-
uating the board situations. In turn, the accuracy of the neural
network’s evaluations depends on its representation of strate-
gies, which is evolved, not preprogrammed.

D. Design Criteria Important for Success

In this paper, we have shown that through coevolution, fixed-
architecture neural networks used as an evaluation function can
be evolved to learn to play Othello. Such an approach is con-
sidered generally to be difficult because it requires comparisons
of absolute values produced from different neural networks as
well as activations from the same neural network. Indeed, pre-
vious attempts in Othello were not encouraging [S]. This raises
the question of why this approach was used here successfully.
In the following paragraphs, we discuss three important factors
that led to the successful coevolution.

First, neural networks were provided with the ability to
sample spatial information from the board. Earlier, it was
argued that one of the requirements for the neural network in
learning to play Othello is the ability to identify spatial charac-
teristics of the board. The spatial preprocessing layer provided
such a capability to the neural network. Two experiments were
conducted to look at the utility of the spatial preprocessing
layer, especially in allowing the neural networks to achieve
master level of play (Fig. 5). In the first, the spatial prepro-
cessing layer was removed to give a flat neural network: two
hidden layers at 40 and 10 nodes, respectively. In the second,
the spatial preprocessing layer was the only hidden layer.
Without the spatial preprocessing layer, it was very difficult to
evolve neural networks to play Othello (Fig. 10). With only the
spatial preprocessing layer, the evolutionary process did meet
with some success (Fig. 11). Clearly, the spatial preprocessing
layer is crucial in giving the neural networks the capacity to
evolve to higher levels of play.

Second, the self-adaptation process was extended to every
weight and bias of the neural network. As seen in Fig. 12, when
the vector [o;(j)] was replaced with a scalar [0;] (a single com-
ponent self-adaptive parameter used to control mutation step
sizes for all weights and biases) for each neural network, evo-
lution did not occur. Similar results were seen when the vector
[0(j)] was replaced with a fixed scalar [o;] of arbitrary values
(essentially changing the operator to a simple Gaussian muta-
tion). These results suggest that although for simple optimiza-
tion problems, simple Gaussian mutation can be used [30], for
more complicated problems, such as coevolving complicated
neural networks to learn to play Othello, it becomes crucial to
extend the degree of freedom of the self-adaptation process as
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can defeat the piece differential player playing at ply-depth of two but lost when
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differential player playing at ply-depth of two and four but lost when it is playing
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player playing at ply-depth of two, four, and six.

the optimal mutation step sizes may vary between individual
weights and biases. (We note that [33] showed that Cauchy mu-
tation or mixing of Gaussian and Cauchy mutation further im-
proves EAs that use self-adaptation, while Fogel [39] showed
that having multiple self-adaptive parameter vectors can im-
prove the performance of the self-adaptation process).

Third, in order to sustain the arms race to search for more
innovative strategies in the coevolutionary process, it is impor-
tant to maintain diversity in the population. This is a crucial
consideration as coevolution of a small and finite population
can result in overspecialization to specific strategies [40], [41].
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Fig. 12. Number and percent of PNNs playing at ply-depth of two capable of
defeating piece differential player playing at ply-depths greater than the PNNs
as a function of generation when the self-adaptive vector [o;(j)] was replaced
with a self-adaptive scalar [0;]. The black line is the result of adjacent averaging
over 100 generations.

To encourage a longer arms race, a number of methods have
been developed [40]—[43], some of which are more specific such
as the Hall-of-Fame [44], and speciation [45], [46]. However,
the important thing to note is that coevolution as a competitive
learning process requires some nondeterminism to allow for a
variety of different strategies to compete with one another [42].
In this experiment, this is accomplished through a tournament
selection that allows a series of random competitions among the
neural networks during evaluations. Occasionally, a relatively
weak neural network (compared to its peers) may be selected
for the next generation because it competed successfully with
weak opponents while a stronger neural network competed only
with strong opponents. Rather than killing off “weak” neural
networks at the current generation, it may be more beneficial
in the long run to retain these neural networks for the evolu-
tionary process to fine-tune, resulting in other unique strategies.
In contrast, a round-robin tournament that selects only the cur-
rently best performing neural networks (relative to their peers)
may ultimately limit the potential for evolution in the long run.
We have investigated this by modifying slightly the tournament
selection module to keep the best neural network of the popu-
lation for the next generation (two copies if the neural network
had already been selected from the tournament competitions).
The results are shown in Fig. 13. Compared with the original
simulation (Fig. 5), it is obvious that in the modified simulation
that evolution produced mostly PNNs at novice level. In another
experiment, increasing the number of interactions from five in
the original simulation to 15 (making the selection mechanism
closer to a round-robin) also resulted in very few PNNs evolved
past the intermediate level (Fig. 14), suggesting that a too high
selection pressure that inhibits diversity in the population is not
preferable in a coevolutionary process.

E. Comparison With the Work of Moriarty et al. in Evolving
Neural Networks as Minimax Filters

Finally, we would like to compare the approach used here
(evolving neural networks as evaluation functions) and that used
by Moriarty and Miikkulainen [5] (evolving neural networks
to function as minimax filters). In terms of performance dif-
ference, a rough comparison can be made through the use of
a computer player based on the positional strategy of Iago [20].
In both approaches, the final neural networks learned mobility
strategy and outperformed the positional player. Moriarty and
Miikkulainen’s neural networks [5] playing at a ply-depth of
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Fig. 14. Evolution in playing ability of the PNNs with generation when the
number of tournament games was increased from five to 15. (a) Number of
PNNSs that can defeat the piece differential player playing at ply-depth of two
but lost when it is playing at ply-depth of four. (b) Number of PNNs that can
defeat the piece differential player playing at ply-depth of two and four but lost
when it is playing at ply-depth of six. (c¢) Number of PNNs that can defeat the
piece differential player playing at ply-depth of two, four, and six.

two were competitive against the positional player playing at
ply-depth of four. In this paper, neural networks playing at ply-
depth of two outperformed the positional player playing at ply-
depth of six (Fig. 6).

While the above comparison is interesting, a more important
concern is whether the approach used here can be applied
to evolve neural networks to function as minimax filters. We
investigated this problem by making suitable modifications
on the neural network. The spatial preprocessing layer was

retained, and fully interconnected to the output layer of 64
nodes. This kept the complicated neural network manageable
at 7687 weights and biases. As in [5], the search window for
the minimax was fixed to three.

Result of the simulation showed that the coevolutionary ap-
proach could not evolve the neural networks. Only when the
population size was increased from 20 to 50 (population sizes
of 30 and 40 were also unsuccessful), was it possible to evolve
neural networks to the novice level. Coevolution could not pro-
duce consistently neural networks that played at intermediate
and master levels.

Modifications were made to the evolutionary process to
investigate the cause behind the failure of the coevolutionary
approach. No improvement was seen when the Gaussian dis-
tribution was replaced with a Cauchy, or Gaussian—Cauchy
hybrid approach in [33] and [34]. This suggests a self-adaptive
mutation operator that uses a fixed distribution is ineffective in
evolving the weights and biases of a fixed-architecture neural
network to function as minimax filters. An alternative is to
replace the self-adaptive mutation operator with differential
evolution (DE) mutation operator [29]. This method has been
studied and applied in neural networks training [47]. In DE
mutation, any change to a particular weight or bias is made by
adding a scaled difference of the particular weight or bias of
two parents chosen randomly. This eliminates the need to use
mutation based on some fixed distribution. This change allowed
the coevolutionary approach with DE mutation to evolve neural
networks to novice level with a population size of 20. However,
it was still difficult to evolve neural networks to higher level of

play.

V. CONCLUSION AND FUTURE DIRECTIONS

Neural networks were evolved successfully to learn to play
Othello without relying on expert knowledge. Coevolution
improved the level of play of the population of neural networks
gradually from novice to intermediate and lastly to master
level over 1000 generations. By the end of the simulation, the
majority of the neural networks had evolved to outperform
players employing both piece differential and positional (based
on Jago) evaluation functions playing at ply-depth of six. More
importantly, individual neural networks managed to discover
different game-playing strategies through coevolution. Some of
the neural networks in the later part of evolution even discov-
ered mobility strategies, and could compete with a computer
player that uses both the positional and mobility strategies of
ITago.

The success met in coevolving fixed-architecture neural
networks to represent Othello game-playing strategies through
board evaluations during fixed minimax searches was shown to
be due to three factors.

1) A spatial preprocessing layer made it possible for neural
networks to capture spatial information directly from the
board.

2) The use of self-adaptive Gaussian mutation, with indi-
vidual vector components used to control the mutation
step size for every weight and bias independently, allowed
the EA great flexibility in adapting mutation step sizes.
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3) Diversity introduced into the population by means of
a tournament selection process (where neural networks
competed with each other in series of random encounters)
allowed for new and innovative strategies to develop.

On the one hand, while it is possible to coevolve neural
networks as evaluation functions, the same approach does not
appear feasible when applied to coevolve neural networks to
function as minimax filters. On the other hand, a previous
approach that was successful in evolving focus networks to
function as minimax filters did not fare well when evolved
as evaluation functions. Thus, rather than arguing which one
of the approaches is better, it would be more advantageous to
develop a hybrid system that combines the strengths of both
approaches. For example, such a system would benefit from
a modular approach that used one neural network to provide
strong evaluation function, while at the same time, utilizing
another neural network to filter the minimax so that the hybrid
can search the tree deeper and faster without losing accuracy.
The main challenge will be to develop an evolutionary approach
that can evolve two different neural networks for two seemingly
different modular tasks to arrive at a stronger play.
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