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Abstract- Evolutionary computation was used to train
neural networks to learn to play the game of Othello,
Each neural network represents a strategy based on
board evaluations of the game tree generated by a
minimax search algorithm, Networks competed
against each other in tournament play and selection
used to eliminate these that performed poerly relative
to other networks. Self-adaptation was used to mutate
the weights and biases of surviving neural networks to
generate offspring. By monitoring the evolutionary
behavior over 1000 generations through game
competitions with computer players playing at higher
ply-depths using deterministic evaluations, the
networks are shown to co-evolve with the style of game
play progressing from random te positional and
finally to mobility strategy.

1 Introduction

Games have always been an important domain for
studies into the behavior of artificial intelligence (Al)
systems, especially for a new generation of Al systems
that harness evolutionary computation and neural
networks for learning and for decision making
(Chellapilla & Fogel 199%a, 1999b, Fogel 1993). Games
like Othello and checkers possess certain characteristics
that make them interesting and viable testbeds to study
both the decision making and learning aspects of these
evolutionary systems. Firstly, games by nature have
specific set of rules that constrains players to cerfain
behaviors (i.e. legal moves), thereby simplifying the
problem at hand. Secondly, games have goals for players
to achieve (i.e. to win the game), with rewards being
given to players that exhibit behaviors (game playing
sirategies) that allow them to achieve the goals under
constraints of finite resources (game pieces). Lastly,
games provide enough subtleties for a wide-range of
complex behaviors, represented by a diverse environment
of players. The challenge posed 1o researchers is to
develop evelutionary system that not only plays the game
competently, but also learns to play the game on its own
without a prigri knowledge. So far, such developments
have shown promising results not only against computer
programs (Chellapilla & Fogel 2000) but also against
human players (Fogel 2002).
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Among various games, Othello, a deterministic,
perfect information, zero-sum game of two plavers,
remains one of the more attractive games to study these
systems. Although Othello has a simple set of rules, an
average of 60 moves to complete, and a small average
branching factor of 7 (Leouski & Utgoff 1996), it is still a
challenging game to master, despite its simplicity for
players to learn. One reason is-that unlike games like
chess, every legal move in Othello adds a piece to the
board that can only be flipped to another color, not
removed. As the game progresses, possible moves are
gradually limited. Another reason is that the effect of
every legal move in flipping certain opponent’s pieces lo
the player’s color makes it difficult to keep track of the
piece topology as it can change drastically from one move
to another. '

In this paper, we discuss the application of a hybrid
system of evolutionary computation and neural networks
to Othello. Compared to previous methods like (Moriaty
& Miikkulainen 1995) where neural networks were
evolved to guide a game tree search, our approach
evolves neural networks to act as evaluation functions for
the minimax search. Co-evolutionary methed is used,
where neural networks in a population compete with each
other for points based on win, lose or draw that decide
selection for the next generation. Rather than trying to
generate strong Othello play, emphasis is placed on
evolved neural networks (ENNs) in learning various game
strategies without preprogrammed expert knowledge. It
will be shown that ENNs can learn to play the game using
concepts from positional and mobility strategies. Section
2 provides background of prior Al studies on Othello.
Section 3 provides brief descriptions on game rules.
Section 4 details the method that is employed for the
study. Section 5 presents results while Section 6 provides
discussion. Section 7 concludes the findings of this study.

2 Background of Al Studies on Othello

Othello is one of the board games where Al programs
developed can equal, if not .surpass, the best. human
players. However, the impression these Al programs
gives to the public can be misleading. Unlike human
players that reach the pinnacle of the game by learning on
their own through competitions, most of these Al
programs are deterministic programs, employing a wide
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range of expert knowledge like Othello strategies and
advanced search algorithms that can search for best
moves to very deep plies in a relatively short time. A
typical example is the work of Rosenbloom who
developed lago, the first master-level Othello-playing
program {Rosenbloom 1982). lago employed an alpha-
beta algorithm for tree searching with kill tables and
heuristics for board evaluations. No leaming mechanism
was incorporated. Later, Lee and Mahajan developed Bill.
Bayesian learning is used, although optimized state-of-the
art searching and timing techniques were still required
{Lee & Mahajan 1990). Finally, Buro’s Logistello used
some brilliant machine learning techniques in its game
ree search, convincingly outplayed a world champion
(Buro 2002).

However, despite these Al systems” excellent
achievements, they still cannot learn to play the game on
their own. Instead of deterministic approaches and the
need for human expert interjection, a feasible alternative

approach is 10 use a hybrid system comprising of neural-

networks and evolutionary computation techniques. This
system will need to leam to play QOthello starting from a
non-playing state without relying on expert knowledge.
Such a self-learning system is possible, since it is known
that neural neiworks can represent complex behaviors and
that evolutionary algorithms (EAs) can optimize complex
behaviors. There are many examples to this approach, in
perfect information games such as checkers (Chellapilla
& Fogel 1999a), tic-tac-toe (Fogel 1993), Othello
(Moriaty & Miikkulainen 1995), and imperfect
information games such as Backgammon (Pollack & Blair
1998).

In this paper, an EA is used to co-evolve neural
networks. Fundamentally, EAs do not need fitness
functions to work. They only require a method to rank
competing solutions to determine which solution is better
than the other. Chellapilla and Fogel showed that with
Jjust “win, lose or draw” information, ENNs not only can
learn to play the game of checkers, but to defeat strong
players rated as experts from a commercial program
(Chellapilla & Fogel 2000) or compared to human players
{Fogel 2002, pp. 283). For our experiment, as the neural
networks are co-evolving, computer players using
deterministic Othello game playing algorithms are used to
monitor the ENNs’ game strategies through Othello game
competitions. In addition, it should be noted that
competition results are not given to neural networks to
provide an independent observation. We will demonstraie
that the resulting ENNs learn to play Othello with game
playing strategies using concepts of positional and
mobility.

3 Othello Game Rules

Othello is played by iwo players, Black and White,
alternatively placing their pieces on an 8 x 8 board.

Starting from an initial board position, Black moves first.
A legal move is one where the new piece is placed
adjacent horizontally, vertically, or diagonaily to an
opponent's existing piece. The piece must be placed in
such a way that at least one of the opponent's pieces lies
between one of the player's existing pieces and the new
piece. The move is completed when the surrounded pieces
are flipped to player's own color. The game is completed
when neither player can make a legal move, which
generally occurs when there are no empty squares
remaining on the board. The winner is the player with the
most pieces on the board at the end of the game. If both
players possess an equal nusnber of pieces, both players
are awarded a draw.

4 Method for Evolving Neural Networks

The simulation program consists of a search algorithm,
a neural-network-based evaluation function, and an EA to
generate offsprings from parent neural networks and that
selects the best neural networks for the next generation. A
separate module is used to monitor the evolution process
without participating. The program was written in ANSI-
C, and ran on a 1.8 GHz Intel processor-based PC,
covering over 1000 generations in 16 days for certain
evolutionary behaviors to be observable.

The search algorithm is based on the basic minimax
algorithm. The basic principle of the algorithm that the
best possible move for every turn is the one that
minimizes the maximum damage the opponent can inflict,
is valid if heuristics used to determine the value of the
moves when searching through the game tree are
accurate. In the simulation, the evaluations during the
minimax search is provided by neural networks. During
evolution, ply-depth is restricted to 2 for neural networks.
As such, the reliability of game heuristics provided by
neural networks will govern the level of play of the ENN.

The neural network used to provide board evaluations
through its input-output response to the minimax is based
on the Muliilayer Perceptron (MLP) model used in
Chellapilla and Fogel’s experiments on evolving MLP’s
to learn to play checkers (Chellapilia & Fogel1999b).
Referring to Fig. 1, the MLP consists of an input layer,
three hidden layers, and an output. The input layer is a
vector consisting of 64 components representing the 64
Othello board positions, The components are represented
in a computable manner as +1 (Black piece), -1 (White
piece), or O (empty square). The first hidden layer is
designed to function as a spatial preprocessing layer. It
consists of 91 nodes, divided into 7 different node types.
Each node type is responsible for different board
subsection sampling as shown in Fig. 1. For example,
there are 36 nodes to sample all possible 3 x 3 board
subsections of the § x 8 game board. The arbitrary
subdivisioning is to provide the neural network a chance
to capture possible spatial characteristics of the board
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Fig. 1 Model of the neural-network-based evaluation function. The model is based on a feed-forward MLP, consisting of a 64 x |
vector input {Othello board representation), 3 hidden layers and a single node output. The first hidden layer, with 91 nodes, acts as 2
spatial preprocessing layer that acts to sample the input to provide spatial information to the network. The second hidden layer (40
nodes), third hidden layer (10 nodes) and the cutput node are fully connected. The output represents the evaluation of the board

position.

for use during board position evaluations, without explicit
spatial features of the game programmed into the neural
network. The second layer and third layer consist of 40
nodes and 10 nodes respectively. All first layer nodes are
connected to all second layer nodes, which are then
connected to all third layer nodes. A single node is used
for output, connected to all nodes in the third layer. Each
of these nodes will sum its inputs and a bias before
passing the sum to a hyperbolic tangent function bounded
by 1 that provides nonlinearity. However, for the output
node, the additional of an input consisting of the board’s
piece differences is also supplied. The neural network’s
effectiveness to provide Othello strategies will depend on
how it uses piece differential information and spatial
information provided by the spatial preprocessing layer
for decision making, as well as how it generalizes the
input-output mappings to effective Othello strategies.
Co-evolution is used to evolve neural networks.
Beginning with neural networks playing randemly, co-
evolution was implemented to improve neural networks’
overall Othello playing strategies and also used to refine
potentially  higher-level strategies without losing
generality or narrowing strategies to certain playing
styles. The procedure for simulating co-evolution starts
with the weights and biases [w;(j)] of 10 neural networks
(strategies) as parents being randomly generated by
sampling from a uniform distribution over [-0.2, 0.2]. The
components of the self-adaptive parameter vector [Gi{j})
for the weights and biases of each neural network were
initially set to 0.05. Components of [o(j}] control the step

size of the mutation. Each of the 10 offspring neural
networks was generated from the parent neural networks
(PNNs) through self-adaptation as follows:

o’,(j) = oi(j) * exp(r * Nj(0,1)), i=1...10; j = 1,...,.Nw
W) = wi(j) + o) * N©,1) , i=1...10; j=1,...,.Nw

where Ny, is the total number of weighls and biases {5900)
for each neural network, T = (2(N,.)**y** = 0.08068, and
Ni{0,1) is a standard Gaussian random variable re-
sampled for every j. Afler generating offspring, each
neural network from the population competes (Black)
against 5 randomly chosen neural networks (White),
where on average, it would be randomly picked to play
White in equal number of games when other neural
networks are evaluated for fitness. Point distribution is set
to 5, 1 and 0 for win, draw and loss respectively to
erfcourage neural networks to play for wins rather than for
draws. A neural network is restricted from competing
against the same opponent more than once unless they
switched color in the two gamés. The game ends after
more than 10 move skips (becaus neural networks
cannot make legai moves). Current board pieces are
counted to award wins, loses or draws to respective neural
networks. At the end, 10 neural networks with most
points are selected to be parents for the next generation.
The process of generating " offspring, tournament
competition and  selection is then  repeated.
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Fig. 2 Analysis of the evolution of the neura! networks. Each PNN competed against the PDP and PSP in two separate games. (a) The
black line indicates points obtained by the PNNs when competing against PDP and PSP playing at ply-depth of 4. The gray line is the
result of a least-squares fit of a second-order polynomial, indicating improvements as the neural network evolves. (b) The black line
shows the difference of points obtained by PNNs that can defeat PSP to points obtained by the same PNNs that can defeat PDP. A
positive points difference will indicate that the major contributors to the points in (a) are successful competitions of PNN against PSP,
while negative points will indicate that the major points contributors are from successful competitions against PDP.

To provide independent monitoring of population
fitness and to observe its changes as neural networks
evolve, the parents for the next generation (after
selection) are compared with computer players through
game competitions. For comparisons, computer players
will use two different algorithms, one for each game, for a
total of two games with each neural network. One
algorithm is based solely on a simple piece differential
evalyation function with a minimax search. The other
uses minimax search also, but employs a more
sophisticated evaluation function, using simplified
heuristics for positional play based on lago’s evaluation
function (Rosenbloom 1982). Comparison starts with
neural network player competing with the piece
differential computer player playing at ply-depth of 2 (the
same ply-depth is used by neural networks). For every
neural network win, the relative level of play of the
computer player is increased by increasing its ply-depth
by 2, up to a maximim of 6. Similar comparison is done
with the positional computer player. Just as the Othello
game provides an interesting case in studying strategy and
strategy changes in.(Biliman & Shaman 1990), the two
computer. @%@il]’ also provide some insight into the

T,

evolutionary behavior of the neural networks in terms of
strategy changes as well.

5 Results

The simulation was conducted for 1000 generations,
which took about 2 weeks of continuous running on a 1.8
GHz machine. To monitor the evolution of the neural
networks ensemble (restricted to a ply-depth of 2),
comparisons of 10 PNNs with the two computer players
were conducted at every generation. For a rough
comparison, a positional computer player (PSP)
outperforms a piece differential computer player {(PDP) in
the game when both are playing at same ply-depth.
Furthermore, comparisons with the two computer players
that use different strategies will allow the observation of
how ENNs respond to opponents playing different styles.

The results of the simulation are summarized in Fig. 2.
Fig. 2(a) plots the points obtained by the PNNs at each
generation. The points given depend on the game
competitions between the PNNs and the computer players
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Fig. 3 Analysis of game competitions between a PNN at
generation 292 with the PDP and the PSP showing evidence of
positionai strategy being employed by the PNN. (a) Total
number of pieces for the PNN and the PDP as a function of
moves made. (b) Total number of pieces for the PNN and the
PSP as a function of moves made.
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Fig. § Analysis of game competitions between a PNN at
generation 791 with the PDP (a) and the PSP (b) showing
evidence of play using concepts of mobility being employed
by the PNN. :
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Fig. 4 Analysis of game competitions between a PNN at
generation 400 with the PDP (a) and the PSP (b). Poor
performance of the PNN indicates that the neural network
population searching for other game playing strategies.
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Fig. 6 Analysis of game competitions between a PNN at
generation 892 with the PDP (a) and the PSP (b) showing
evidence of perfected mobility play being employed by the
PNN.
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playing at ply-depth of 4. For a successful defeat of the
PSP by the PNN, | point is awarded. Likewise, | point is
awarded to the same PNN if it also defeats the PDP. Thus,
a single PNN can obtain a maximum of 2 points and the
10 PNNs at a generation can obtain a maximum of 20
points (a percentage is also calculated al each generation,
with 100 % meaning that the PNN population scored
maximum points at its generation). As such, Fig. 2(a}
shows the progress of the neural network evolution. For
example, for the first 400 generations, the PNN
population scored about an average of 25 % of the
maximum score while from generation 850 onwards, the
average increases to about 75 %. Fluctuations are
observed throughout the evolution process, while the
least-squares fit of a second-order polynomial (3rd, and
4th-order coefficients are essentially zero) indicates that
improvement of the play of the ensemble of PNNs
increases as evolution progresses. In addition, another
analysis of the evolution process can be observed with
Fig. 2(b). This graph is a result of taking the difference
between the points obtained by PNNs that can outperform
the PSP playing at ply-depth of 4 with the points obtained
by PNNs that can outperform the PDP playing at the same
ply-depth also. A positive number will indicate that at that
particular generation, more PNNs are competitive against
PSP compared to the PDP. For example, at around
generation 400 and 600, Fig. 2(b) shows that more PNNs
can defeat the PSP, while between the period (around
generation 300), Fig. 2(b) shows that the PNNs are
comparable to both computer players (since the difference
value is small and near zero).

Figures 3, 4, 5 and 6 are results from analysis of game-
plays of the first PNN (selected by the selection
mechanism employed in the simulation) against the two
computer players. In all the figures, there are a total of
two graphs. The first graph, (a), plots the number of
pieces acquired by the PNN and the PDP playing at ply-
depth of 4 throughout the game. Graph (b) plots the
number of pieces acquired by the PNN and the PSP
playing at ply-depth of 4 throughout the game. Figures 3
to 6 are results from analysis of the game between the
PNN and the computer players at generation 292, 400,
791 and 892.

In Fig. 3, it can be observed that the PNN at
generation 292 outperformed both the PDP and PSP
playing at ply-depth of 4. With reference to data in Fig.
2(a), the PNN population scored 13/20 (65 %) while in
Fig. 2(b) the difference is negative {4 PNNs outperformed
the PSP compared to & PNN can outperform the PDP),
indicating that the majority of the score obtained in Fig
2(a) at this generation is from competitions between
PNNs and PDP. As for Fig. 4, the PNN at generation 400
lost to the PDP but drew with the PSP. At this generation,
the PNN population scored 6/20 (30 %), with a positive
difference (6 PNNs outperformed the PSP but all PNNs
lost to the PDP). For Fig. S, at generation 791, the PNN
outperformed the PDP and only narrowly defeated the
PSP. The PNN population at this generation scored 4/20
(20%), with a zero points difference. Lastly, for Fig. 6, at

generation 892, the PNN outperformed both PDP and
PSP. The PNN population performed admirably, scoring
20/20 (100 %), with a zero points difference.

6 Discussion

The use of computer players such as PDP and PSP in
this experiment is crucial, in that the comparisons
between both computer players and with the neural
networks provide an independent and external
observation to the evolutionary behavior of the ENNs,
just like the use of game transcripts in (Biliman &
Shaman 1990) to study strategy changes in game playing
of Othello players. As such, there are several important
considerations to be noted regarding such an observation
method. First of all, the fact that the computer players use
fixed evaluation functions is important because they
provide fixed standards that can be used to evaluate the
ENNs’ playing strategies. This is due to the fact that the
PDP and PSP are deterministic players and will always
respond in a manner they are programmed regardless of
how the ENNs play. For example, the PDP will always try
to capture as many pieces as possible while the PSP will
always try to caplure strategic locations in the board.
Secondly, the computer players were designed such that
they are neither substantially stronger nor substantially
weaker than the ENNs. This is crucial because computer
players that either defeat all the neural networks or loses
10 all the neural networks will not provide a good measure
in observing the evolutionary behavior as well as the
dynamical fitness of the ENNs as they co-evolve. In
addition, the fact that the computer players’ level of play
is tunable by changing the ply-depth of the minimax
search algorithm provides some measure of flexibility to
assess the ENNs level of play. Lastly, the general use of
the minimax algorithm by all the players (PDP, PSP, and
ENN) is crucial in that analysis can be made directly on
the learning behavior of the ENN, focusing on the input-
output mappings of the neural networks and how
evolution plays a hand in perfecting the mappings to
represent Othello game strategies.

As for the results of the simulation, Fig. 2(a) shows
that the level of play among the PNN population
improves with time (generaticn). As the neural network
co-evolves, the scores that the PNNs obtained increase.
Starting with an average of 25 % of maximum score, the
neural networks have evelved to a state where the PNN
population, from generation 8G0 onwards, can score 75 to
80 % of the maximum score. The results of the
experiment in Fig 2(a) indicates that starting from a non-
playing state (the ENNs were randomly initialized), co-
evolution had managed to evolve the ENNGs to a state they
can play Othello competently, with about 8 PNNs out of
10 can outperform the PDP and PSP playing at ply-depth
of 4. Clearly, through co-evolution, the ENNs have
learned to play the game of Othello on their own.

However, what is more interesting is that throughout
the evolution of the neural networks, certain playing
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strategies as well as changes in playing strategies are
observed. Before further discussion, it should be noted
that generally, a positional strategy is very effective
against a strategy based solely on piece differentials. In
addition, mobility strategy in turn is effective against a
positional strategy in an Othello game. Looking at the
evolution of the neural networks, Fig. 2(b) shows that at
the start of the evolution to about generation 200, the
majority of the PNNs were more competitive against PSP
than against PDP (the curve resides in positive values).
Although the figure mighi suggest that the neural
networks are adopting a strategy that is effective only
against positional strategy used by PSP, more in-depth
analysis from the games will suggest otherwise. During
this period, the neural networks seemed to engage in
random moves with hints of positional strategy being
employed, and that the style of play seemed to be
effective against the PSP but ineffective against PDP.
This is particularly interesting since for human players
leamning to play Othello, novices also seemed to
uniformly begin with positional strategy (Billman &
Shaman 1990). However, upon further evolution, the
PNNs seemed o have grasped the underlying concepts
regarding positional strategy. This is observed at
generation 292, As suggested by Fig. 3, the PNN used a
viable form of positional strategy that was more superior
compared to the one used by the PSP (Fig. 3(b)), and
whose overall game play was very effective against the
PDP (Fig. 3(a)).

Further analysis will reveal that as the neural networks
evolve, changes from positicnal to mobility style of plays
have occurred, although the transition is not always
smooth or stable. For example, with a population of
neural networks playing strong positional strategy, it
would have been difficult for the neural networks to make
further improvements as to the strength of the positional
strategy. Other strategies are being searched and adopted
by PNNs that might overcome positional style of play,
which at times might be narrow in nature. For example, at
generation 400, the majority of the PNNs were
competitive against the PSP but none of the PNNs can
defeat the PDP (Fig. 2(b)). Game analysis will show that
a PNN at this generation performed badly against the PDP
(Fig. 4(a)) but managed to draw with the PSP (Fig. 4(b)).
Further analysis will show that the PNN was still trying to
play a particular variation of positional strategy.

Upon further evolution, it seems that the evolving
neural networks have managed to discover a particular
strategy that is effective against positional style of play,
that is, a strategy that uses concepts of restricting the
opponents’ number of moves (mobility strategy). For
example, at generation 791, Fig. 5(b) shows that the
neural network is attempting a mobility strategy, where
the intermediate goal of minimizing the opponent’s
number of moves usually results in a particular graph seen
in (Moriaty & Miikkulainen 1995). The same strategy
employed by the PNN also worked well against a PDP
(Fig. 5(a)).

Further co-evolution of neural networks seemed to
perfect the mobility style of play, culminating at
generation 892, where all the PNNs can defeat both PDP
and PSP (Fig. 2(a)). In addition, game analysis from Fig.
6 indicates that the neural network used a viable form of
mobility strategy. In playing against the PSP, the neural
network demonstrated that mobility play is a more
sophisticated form of Othello playing strategy compared
to positional play (Fig. 6(b)). Furthermore, the same
strategy used by the particular neural network was also
effective against the PDP (Fig. 6(a)), where at the start to
middle part of the game, the neural network kept a low
number of pieces but a high number of move possibilities
before quickly taking advantages of its much. more
superior positions and move options to defeat the PDP.

Finally, to look at the performance of the PNN at
generation 892, a computer player that incorporates both
positional and mobility strategies of lago for its
evaluation function is used. At ply-depth of 2, the PNN
played quite well compared to this computer player that
was also playing at the same ply-depth. The PNN
narrowly lost to the computer player at 30 to 34. It was
only when the ply-depth was adjusted to 4 that the PNN
can convincingly outperform the computer player at 43 to
21. Although the PNN’s ply-depth needed to be increased
to defeat this simplified version of Iago that used some
viable mobility strategies for its play, the PNN’s play that
resulted in restricting the computer player’s movement to
an average of 1 possible legal move from move number
48 onwards of the game should be well noted.

In addition to ENNs success in discovering and
adoption to mobility strategy, it is perhaps much more
interesting to take into consideration parallels between
how ENN and human learn to play the game. Just like a
human player, ENNs will start from a simple variation of
positional strategy before learning to perfect the game
play through continued evolution. In addition, like a
human player also, upon reaching a particular superior
level of positional play, there will be attempts to search
for strategies that can defeat positional play. During this
period, ENNs also find the same difficulty as a human
player, and often resort back to positional play. It is only
after further evolution that the ENNs managed to discover
and to perfect the mobility strategy that is very effective
against positional play, but also in overall effectiveness
against other styles of play. In addition, observations of
Fig. 2 also prove to be interesting as it provides
indications as to how the changes of game playing
strategies occur as the neural networks are learning
(evolving) to play the game. A high points score in Fig.
2(a) and a small points difference in Fig. 2(b) will
indicate a strong overall playing strategy. A high points
score but a large pomts difference will indicate a narrow
playing strategy. Thus, analysis of Fig. 2 will show that as
the neural networks evolve, it will learn to play from a
narrow playing strategy to an overall playing strategy.
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7 Conclusion

The results of the experiment have shown that not only
co-evolving neural networks learn to play the zero-sum
game Othello without relying on preprogrammed expert
knowledge, but also learn to use concepts of positional
strategy and mobility strategy in their game play. More
interesting is the fact that the ENNs learn the various
strategies much like a human player does. Starting with
random play with hints of positional play, the neural
networks co-evolve to perfect their current play to a
competent level of positional play. After that, further
evolution will reveal successful attempts of the ENNs to
discover mobility strategy and to adopt the game play.
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